HVLVD1_SRCSEL=VDDD
Low Voltage Detector (LVD) Configuration Register
HVLVD1_TRIPSEL | Threshold selection for HVLVD1. Disable the LVD (HVLVD1_EN=0) before changing the threshold. 0: rise=1.225V (nom), fall=1.2V (nom) 1: rise=1.425V (nom), fall=1.4V (nom) 2: rise=1.625V (nom), fall=1.6V (nom) 3: rise=1.825V (nom), fall=1.8V (nom) 4: rise=2.025V (nom), fall=2V (nom) 5: rise=2.125V (nom), fall=2.1V (nom) 6: rise=2.225V (nom), fall=2.2V (nom) 7: rise=2.325V (nom), fall=2.3V (nom) 8: rise=2.425V (nom), fall=2.4V (nom) 9: rise=2.525V (nom), fall=2.5V (nom) 10: rise=2.625V (nom), fall=2.6V (nom) 11: rise=2.725V (nom), fall=2.7V (nom) 12: rise=2.825V (nom), fall=2.8V (nom) 13: rise=2.925V (nom), fall=2.9V (nom) 14: rise=3.025V (nom), fall=3.0V (nom) 15: rise=3.125V (nom), fall=3.1V (nom) |
HVLVD1_SRCSEL | Source selection for HVLVD1 0 (VDDD): Select VDDD 1 (AMUXBUSA): Select AMUXBUSA (VDDD branch) 2 (RSVD): N/A 3 (VDDIO): N/A 4 (AMUXBUSB): Select AMUXBUSB (VDDD branch) |
HVLVD1_EN | Enable HVLVD1 voltage monitor. When the LVD is enabled, it takes 20us for it to settle. There is no hardware stabilization counter, and it may falsely trigger during settling. It is recommended that firmware keep the interrupt masked for at least 8us, write a 1’b1 to the corresponding SRSS_INTR field to any falsely pended interrupt, and then optionally unmask the interrupt. After enabling, it further recommended to read the realted PWR_LVD_STATUS field, since the interrupt only triggers on edges. This bit is cleared (LVD is disabled) when entering DEEPSLEEP to prevent false interrupts during wakeup. |